Abstract Submitted for the DAMOP09 Meeting of The American Physical Society

Sorting Category: 5.3 (E)

Sympathetic cooling and trapped-ion quantum logic gates¹ DAVID HANNEKE, NIST Ion Storage Group, J.D. JOST, J.P. HOME, J.M. AMINI, R. OZERI*, C. LANGER**, J.J. BOLLINGER, D. LEIBFRIED, D.J. WINELAND — Motional excitation in a trapped-ion quantum information processor degrades the performance of quantum logic gates. Excitations arise from noise emanating from the electrodes and from shuttling ions. Additional ions of a different species can be used to sympathetically cool qubit ions' motion, re-initializing the ground state while leaving intact quantum information stored in the internal state of a qubit ion. Here, we describe an experimental demonstration of a two-qubit entangling operation implemented after sympathetic cooling. We avoid decoherence during ion transport by using a field-independent hyperfine transition of ⁹Be⁺ as our qubit.

*Weizmann Institute of Science, Israel

		David Hanneke
X	Prefer Oral Session	hanneke@boulder.nist.gov
	Prefer Poster Session	NIST Ion Storage Group

Date submitted: 23 Jan 2009 Electronic form version 1.4

^{**}Lockheed Martin, CO

¹Supported by IARPA and the NIST Quantum Information Program.